Research on Thermal Management Coupling by CPCM and Liquid Cooling for Vehicle Lithium-Ion Batteries
Yijin Wang,
Changqing Du () and
Zichen Wang
Additional contact information
Yijin Wang: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
Changqing Du: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
Zichen Wang: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
Energies, 2023, vol. 16, issue 14, 1-12
Abstract:
This study addresses the issue of heat dissipation in 18,650 cylindrical lithium-ion battery packs and proposes a novel heat dissipation model that combines paraffin wax-expanded graphite composite phase change material (CPCM) with liquid cooling. Initially, a comparison is conducted between the heat dissipation effects of the battery pack under natural convection and the heat dissipation achieved through the utilization of CPCM. Subsequently, the CPCM model is employed to identify the optimal battery arrangement. Subsequently, a heat dissipation model is developed by coupling CPCM with liquid cooling. The simulation outcomes obtained using COMSOL software demonstrate that employing the paraffin-expanded graphite CPCM liquid cooling coupled heat dissipation model can achieve a reduction in battery spacing to 0 mm while maintaining the maximum surface temperature of the battery between 20–45 °C and improving the temperature uniformity of the battery during 1–3 C cyclic charging and discharging. This approach ensures the battery pack’s normal operation, enhances safety, and prolongs the battery pack’s service life.
Keywords: CPCM; expanded graphite; liquid cooling; thermal management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5260/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5260/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5260-:d:1190061
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().