Experimental Investigation of Stochastically Forced Rijke-Type Supercritical Thermoacoustic Systems
Hao Zhang,
Yuanhao Wang,
Xinyan Li (),
Geng Chen and
Yuze Sun
Additional contact information
Hao Zhang: Beijing Institute of Technology, Beijing 100081, China
Yuanhao Wang: Southwest Technology and Engineering Research Institute, Chongqing 401329, China
Xinyan Li: Beijing Institute of Technology, Beijing 100081, China
Geng Chen: School of Energy and Environment, Southeast University, Nanjing 210096, China
Yuze Sun: School of Civil Aviation, Northwestern Polytechnical University, Suzhou 215400, China
Energies, 2023, vol. 16, issue 14, 1-13
Abstract:
Intense thermoacoustic oscillations may lead to severe deterioration due to the induced intolerable damage to combustors. A better understanding of unstable behaviors is important to prevent or suppress these oscillations. Active thermoacoustic coupling in practical combustors is caused primarily by two approaches: inherent turbulent fluctuations and the flame response to acoustic waves. Turbulent fluctuations are generally characterized by random noise. This paper experimentally expands on previous analytic studies regarding the influence of colored disturbances on the thermoacoustic response near the supercritical bifurcation point. Therein, a laboratory-scale Rijke-type thermoacoustic system is established, and both supercritical and subcritical bifurcations are observed. Then, Ornstein–Uhlenbeck (OU)-type external colored noise is introduced near the supercritical bifurcation point, and the effects of the corresponding correlation time τ c and noise intensity D are studied. The experimental results show that these variables of the colored noise significantly influence the dynamics of thermoacoustic oscillations in terms of the most probable amplitude and autocorrelation properties. A resonance-like behavior is observed as the noise intensity or the autocorrelation time of the colored noise is continuously varied, which means that the coherent resonance occurs in the thermoacoustic system. Finally, when the system is configured closer to the stability boundary, the extent of the coherence motion is intensified in the stochastic system response. Meanwhile, the signal-to-noise ratios (SNRs) of the colored-noise-induced response are found to become more distinguished, the optimal colored noise intensity decreases, and the optimal autocorrelation time increases. These findings provide valuable guidance to predict the onset of thermoacoustic instabilities.
Keywords: thermoacoustic instability; Ornstein–Uhlenbeck-type colored noises; supercritical bifurcation; coherence resonance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5300/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5300/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5300-:d:1191469
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().