Application of Particle Swarm Optimization (PSO) Algorithm in Determining Thermodynamics of Solid Combustibles
Haoyu Pan and
Junhui Gong ()
Additional contact information
Haoyu Pan: College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
Junhui Gong: College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
Energies, 2023, vol. 16, issue 14, 1-16
Abstract:
The thermodynamics of a solid are crucial in predicting thermal responses and fire behaviors, and they are commonly determined by inverse modeling and optimization algorithms at constant heat flux. However, in practical scenarios, the imposed heat flux frequently varies with time, and related thermodynamics determination methods are rarely reported. In this study, the particle swarm optimization (PSO) algorithm and a 1D numerical model were utilized to determine temperature-dependent thermal conductivity and specific heat of beech wood and polymethyl methacrylate (PMMA). Surface, 3 and 6 mm in-depth temperatures were measured in three sets of ignition tests where constant and time-dependent heat fluxes (HFs) were applied. In each set, PSO was implemented at individual HFs, and the average value was deemed as the final outcome. Reliability of the optimized thermodynamics was verified by comparing with the reported values in the literature and predicting the experimental measurements that were not employed during parameterization. The results showed that wood thermodynamics attained under constant and time-dependent HFs in agreement with previously reported ones. Similar optimization procedures were conducted for PMMA, and good agreement with literature values was found. Using the obtained thermodynamics of wood under constant HF, the numerical model successfully captured the surface temperature at time-dependent HFs. Meanwhile, comparisons using wood temperatures at constant HFs and PMMA temperatures at linear HFs also verified the feasibility of PSO.
Keywords: particle swarm optimization (PSO); thermal conductivity; specific heat; beech wood; polymethyl methacrylate (PMMA) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5302/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5302/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5302-:d:1191470
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().