EconPapers    
Economics at your fingertips  
 

Spatial Network and Driving Factors of Agricultural Green Total Factor Productivity in China

Zhou Zhou, Jianqiang Duan (), Shaoqing Geng and Ran Li
Additional contact information
Zhou Zhou: School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
Jianqiang Duan: School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
Shaoqing Geng: School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
Ran Li: School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China

Energies, 2023, vol. 16, issue 14, 1-26

Abstract: Agricultural green total factor productivity (AGTFP) is an important indicator to reflect the sustainability level of agriculture. The AGTFP network reflects the spatial correlations of the AGTFP among regions; thus, exploring its network structure and influencing factors can provide targeted policy guidance to the coordinated development of the agriculture sector. This study builds an epsilon-based measurement data envelopment analysis (EBM-DEA) model to calculate 31 provincial AGTFPs in China from 2002 to 2020. Then, social network analysis (SNA) was utilized to explore the characteristics of the AGTFP network, and the quadratic assignment procedure (QAP) was applied to find its external influencing factors. We reached four central conclusions: (1) Overall, there was a gradual upward trend of AGTFP in China during 2002~2020, and the average value rose from 0.75 in 2002 to 0.90 in 2020, but there were some differences among regions. (2) There is a complex and stable network characteristic of AGTFP; the average network density is 0.3753, and the average network efficiency is 0.4714. Meanwhile, some eastern and central areas, such as Henan, Anhui, Hubei, Hebei, Jiangsu, etc., have relatively high centrality and are a bridge in the entire network. (3) The AGTFP network can be divided into eight blocks, including two net beneficial blocks (the central-eastern provinces with high centrality); two net spillover blocks, including the provinces located in the developed urban areas (Beijing, Tianjin, Shanghai, and Jilin), the underdeveloped northwest regions (Ningxia, Qinghai, Xinjiang, and Tibet). The other areas are two-way spillover blocks. (4) Transportation development gap, technological progress gap, and the similarities of the agricultural industry structure are critical factors influencing the AGTFP network. Hence, improving the efficiency of the logistics and transportation industry, promoting technology transfer from developed areas to underdeveloped areas, and developing characteristic agriculture are all conducive to promoting the whole region’s AGTFP. Our research provides policy implications for sustainable agricultural development in China and other developing countries.

Keywords: AGTFP network; agricultural carbon emissions; nonpoint source pollution; EBM-DEA; social network analysis; QAP analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5380/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5380/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5380-:d:1194242

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5380-:d:1194242