A Joint Clearing Model of Energy-Frequency Modulation Based on Flexible Block Order
Qunli Wu and
Kaiyue Qu ()
Additional contact information
Qunli Wu: Department of Economics and Management, North China Electric Power University, Baoding 071003, China
Kaiyue Qu: Department of Economics and Management, North China Electric Power University, Baoding 071003, China
Energies, 2023, vol. 16, issue 14, 1-22
Abstract:
The large-scale integration of renewable energy into the grid has led to a gradual diversification of power generation trading units on the power-side, with varying operational characteristics, costs, and trading needs among diverse power generation trading units. Traditional power system clearing models face challenges. Block order is a bidding type that allows for multiple volume–price combinations. At the same time, the randomness and volatility of renewable energy poses challenges to the safe and stable operation of the system. Building a power system clearing model that meets the diverse and flexible needs of the power system has become an important consideration. Therefore, this paper considers the design of three flexible energy blocks: a sustaining block, flux block, and adjustment block to meet the differential needs of diverse trading units and establishes a flexible block order clearing model. Secondly, it establishes a joint clearing model of electrical energy and frequency modulation (FM) to ensure the stable and reliable operation of the system, and solves the model based on relevant constraints to determine the winning electrical energy price and FM price. The CPLEX and Yalmip algorithms are used to solve the model. Finally, a case study was conducted based on an improved IEEE 14-bus system. The results showed that the model proposed in this paper can satisfy the differential needs of diverse trading units, effectively improve the renewable energy consumption capacity, and reduce the prices of the energy market and frequency modulation market. Also, the standard deviation of the net load of the system is relatively low, which improves the reliability of the power system’s operation.
Keywords: renewable energy; electrical energy market; frequency modulation auxiliary service market; flexible block order; clearing model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5413/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5413/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5413-:d:1195334
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().