EconPapers    
Economics at your fingertips  
 

Low-Temperature Sinterable Cu@Ag Paste with Superior Strength Driven by Pre-Heating Process

Miso Won, Dajung Kim, Hyunseung Yang and Chulmin Oh ()
Additional contact information
Miso Won: Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Seongnam-si 13509, Gyeonggi-do, Republic of Korea
Dajung Kim: Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Seongnam-si 13509, Gyeonggi-do, Republic of Korea
Hyunseung Yang: Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Seongnam-si 13509, Gyeonggi-do, Republic of Korea
Chulmin Oh: Electronic Convergence Material & Device Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Seongnam-si 13509, Gyeonggi-do, Republic of Korea

Energies, 2023, vol. 16, issue 14, 1-11

Abstract: To preserve the structural integrity of power semiconductor devices, ensuring a reliable connection between wide-bandgap (WBG) chips and their substrates at temperatures above 200 °C is crucial. Therefore, easily processable chip-attach materials with high bonding strengths at high temperatures should be developed. Herein, we determined the optimal pre-heating conditions of chip-attach materials to achieve highly reliable WBG semiconductor devices. Sintering with silver-coated copper (Cu@Ag) particle paste was investigated as a model system for chip attachment in electric power devices. After printing the paste onto a direct-bonded ceramic substrate and placing the Si chip on the paste, the pre-heating process was conducted at 50 and 70 °C for different periods of time. Finally, the samples were sintered at a pressure of 9 MPa at 250 °C in an N 2 atmosphere for 1 h. The quality of the obtained Cu@Ag joints significantly varied depending on the pre-heating temperature and time. When Cu@Ag joints were pre-heated at 50 °C, more reliable and reproducible bonding was achieved than at 70 °C. In particular, high-quality sintered joints were obtained with a pre-heating time of 4 min. However, after excessive pre-heating time, cracks and voids were generated impacting negatively the performance of the sintered joints.

Keywords: Ag-coated Cu particles; metal matrix composite; interface; sintered joints; power electronics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5419/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5419/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5419-:d:1195670

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5419-:d:1195670