Combustion and Emission of Castor Biofuel Blends in a Single-Cylinder Diesel Engine
Fangyuan Zheng and
Haengmuk Cho ()
Additional contact information
Fangyuan Zheng: Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea
Haengmuk Cho: Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea
Energies, 2023, vol. 16, issue 14, 1-13
Abstract:
Fossil fuels confront the problem of strategic resource depletion since they have been continuously utilized for more than 200 years and cause serious damages to the ecological environment of the planet. In this work, the transesterification of castor plant oil was utilized to make biodiesel, and castor biodiesel’s physicochemical qualities were assessed. On a single-cylinder, four-stroke, water-cooled agricultural diesel engine, an experimental study was conducted to compare and analyze the engine performance and emission characteristics of diesel and biodiesel blends in various amounts. The B20, B40, B60, and B80 biodiesel blends were evaluated at different engine speeds (1200, 1400, 1600, and 1800 rpm) with a constant engine load (50%). According to the experimental findings, the brake thermal efficiency (BTE) declines as the engine speed rises, and the biodiesel fuel blend has a lower brake thermal efficiency (BTE) than diesel fuel because of its higher density and viscosity and lower calorific value. The amount of gasoline required to create power increases as the speed does, and the brake-specific fuel consumption (BSFC) trend is upward. Due to their low calorific value and high viscosity properties, biodiesel blends have a greater brake-specific fuel consumption (BSFC) than diesel. The fuel’s exhaust gas temperature (EGT) has an upward trend with an increased rotational speed. The biodiesel blend’s high cetane number shortens the ignition delay and lowers the exhaust gas temperature (EGT) compared to diesel. A fuel with oxygen added, biodiesel enhances combustion, increases the combustion temperature, speeds up the oxidation process, and lowers carbon monoxide (CO) and hydrocarbon emissions. B80 produces the lowest carbon monoxide and hydrocarbon emissions at 1800 rpm, at 0.33%, and 30 ppm, respectively. On the other hand, increased carbon dioxide (CO 2 ) emissions result from a high oxygen concentration. In addition, compared to diesel fuel, biodiesel’s greater combustion temperature causes the creation of increased nitrogen oxide (NOx) emissions. According to the research findings, a castor biodiesel fuel blend is an excellent alternative fuel for engines since it can be utilized directly without modifying the current engine construction and has good engine and exhaust emission performance.
Keywords: biofuel blends; diesel; emissions; engine performance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5427/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5427/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5427-:d:1195981
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().