Three-Phase Modal Noise Analysis and Optimal Three-Phase Power Line Filter Design
Marco Bosi,
Albert Miquel Sánchez,
Francisco Javier Pajares and
Lorenzo Peretto ()
Additional contact information
Marco Bosi: Wavecontrol SL, Carrer de Pallars 65, 08014 Barcelona, Spain
Albert Miquel Sánchez: EMZER Technological Solutions SL, Carrer de Pallars 65, 08014 Barcelona, Spain
Francisco Javier Pajares: EMZER Technological Solutions SL, Carrer de Pallars 65, 08014 Barcelona, Spain
Lorenzo Peretto: Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
Energies, 2023, vol. 16, issue 14, 1-20
Abstract:
Conducted emissions (CE) for three-phase systems are becoming an increasing concern due to the recent exponential growth of three-phase applications, especially linked to the automotive sector. The problem arises because electromagnetic compatibility (EMC) standards only define the methodology to measure the CE generated by the equipment under test (EUT), and they do not provide sufficient information to design a power line filter (PLF) in case of non-compliance. Hence, the design of an optimal PLF is a very difficult task for engineers. The unclear methodology to be followed, unknown load impedances, inadequate equipment, and lack of knowledge of the modal noise are all different reasons that contribute to increasing the PLF design complexity. Common mode (CM) and differential mode (DM) decomposition and PLF design techniques for single-phase EUTs are well discussed and studied in the literature, but the same cannot be stated when it comes to three-phase PLF design. The objective of this paper is to clarify how modal noises behave in a three-phase system and to propose a clear methodology which can be followed to design an optimal three-phase PLF. Additionally, this paper analyses and discusses the modal noises’ intrinsic behavior and provides an understanding of how the PLF components behave when subjected to either a CM or DM noise. Finally, a methodology to design a three-phase PLF, based on accurate insertion loss (IL) estimations and S-parameter measurements, is used to determine the optimal PLF. This approach is tested and validated.
Keywords: EMC; common mode (CM); differential mode (DM); conducted emissions; S-parameters; three-phase CE testing; three-phase filter design (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5461/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5461/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5461-:d:1196716
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().