Experimental and Numerical Study of the Ice Storage Process and Material Properties of Ice Storage Coils
Xiaoyu Xu,
Chun Chang (),
Xinxin Guo and
Mingzhi Zhao
Additional contact information
Xiaoyu Xu: College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Chun Chang: College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Xinxin Guo: Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China
Mingzhi Zhao: College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Energies, 2023, vol. 16, issue 14, 1-18
Abstract:
The coiled ice-storage-based air conditioning system plays a significant role in enhancing grid peak regulation and improving cooling economy. This paper presents theoretical and experimental studies conducted on the ice storage process of coiled ice storage air conditioning technology. The cooling of water is divided into two stages:10.0 °C to 4.0 °C and 4.0 °C to below 0.0 °C. Initially, the ice storage process forms an ice layer with a thickness of 2.50 mm on the lower surface of the coil, but eventually, the ice layer on the upper surface becomes 3.85 mm thicker than the lower surface as a result of the natural convection of water and density reversal at 4.0 °C. Furthermore, the impact of three coils with different thermal conductivity on the ice storage process was evaluated. It was observed that the thermal conductivity of R-HDPE (reinforced high-density polyethylene) was only 2.6 W/(m·K) higher than HDPE (high-density polyethylene), yet it reduced the freezing time by 34.85%, while the thermal conductivity of steel was 37.4 W/(m·K) higher than R-HDPE, but only decreased the freezing time by 9.40%. The results demonstrated that the rate of ice accumulation increased with thermal conductivity. However, when the coil material’s thermal conductivity surpassed that of ice, the further increase of thermal conductivity gradually weakened its impact on the ice storage rate.
Keywords: cold storage; coil; natural convection; density inversion; thermal conductivity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5511/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5511/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5511-:d:1198597
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().