Backstepping Control of NPC Multilevel Converter Interfacing AC and DC Microgrids
J. Dionísio Barros (),
Luis Rocha and
J. Fernando Silva
Additional contact information
J. Dionísio Barros: Departamento de Engenharia Eletrotécnica, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
Luis Rocha: Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento em Lisboa, INESC-ID, Rua Alves Redol, 1000-029 Lisboa, Portugal
J. Fernando Silva: Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento em Lisboa, INESC-ID, Rua Alves Redol, 1000-029 Lisboa, Portugal
Energies, 2023, vol. 16, issue 14, 1-18
Abstract:
This work introduces modified backstepping methods to design controllers for neutral point clamped (NPC) converters interfacing a DC/AC microgrid. The modified backstepping controllers are derived from a proper converter model, represented in dq coordinates, and are designed to regulate the DC voltage and to balance the two NPC converter DC capacitor voltages through a DC offset in the sinusoidal pulse width modulation (SPWM) carriers. The averaged and separated dynamics backstepping controllers also enforce nearly sinusoidal AC currents at a given power factor. The two proposed NPC converter controllers are evaluated through MATLAB/Simulink simulations and experimental implementation using a laboratory prototype. Simulations and experimental results show that the two modified backstepping controllers regulate the microgrid DC voltage in steady state and in transient operation, even with load disturbances or DC voltage reference changes, while enforcing nearly AC sinusoidal currents at a given power factor or injected reactive power. The modified backstepping-controlled NPC converter is bidirectional, converting energy from DC renewable energy sources or storage systems to AC or charging storage systems from AC. The results also highlight the effective balancing of the NPC DC capacitor voltages.
Keywords: backstepping control; microgrids; multilevel converter; separate dynamics; capacitor voltage balance; pulse width modulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/14/5515/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/14/5515/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:14:p:5515-:d:1198697
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().