Influence of the Type of Receiver on Electrical Energy Losses in Power Grids
Zbigniew Kłosowski and
Łukasz Mazur ()
Additional contact information
Zbigniew Kłosowski: Institute of Electrical Engineering, Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
Łukasz Mazur: Institute of Electrical Engineering, Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
Energies, 2023, vol. 16, issue 15, 1-22
Abstract:
The development of power electronics, including high-efficiency power supply systems, changes the structure of perception of the types of electrical energy receivers connected to the power grid at each supply voltage level. In the past, the dominant type of receivers were constant impedance devices. Currently, more and more devices have power supplies, which are most often constant power receivers. The construction and technological diversity of receivers allows mixed receivers, which are a combination of constant power and constant impedance receivers, to be distinguished. Therefore, there is a need to determine the impact of the type of electrical energy receivers on the power grid, both in the context of the operation of a single receiver and in the case of a branched power grid with a high penetration of distributed generation. This article will discuss the impact of the type of electrical energy receivers on the operation of the power grid, with particular emphasis on the issue of electrical energy losses at changing voltages. To determine the impact of receivers, simulation studies were performed based on two case stages: the first is a fragment of a low-voltage power grid in a household that supplies a heating device, which is analyzed as a different type of receiver; the second is a fragment of a low-voltage power grid with various types of consumers and photovoltaic installations. The research was carried out on the basis of the mathematical model of the low-voltage power network developed by the authors using the electric multipole method and Newton’s method. The obtained results show that the type of receiver may have an impact on electrical energy losses.
Keywords: electrical energy losses; constant impedance load; constant power load; mathematical modeling; low-voltage power grid; electric power system; distributed generation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/15/5660/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/15/5660/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:15:p:5660-:d:1204192
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().