EconPapers    
Economics at your fingertips  
 

A New Golden Eagle Optimization with Stooping Behaviour for Photovoltaic Maximum Power Tracking under Partial Shading

Zhi-Kai Fan, Kuo-Lung Lian () and Jia-Fu Lin
Additional contact information
Zhi-Kai Fan: Department of Electrical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei City 106, Taiwan
Kuo-Lung Lian: Department of Electrical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei City 106, Taiwan
Jia-Fu Lin: Taiwan Power Company, No. 242, Section 3, Roosevelt Rd., Zhongzheng District, Taipei City 100208, Taiwan

Energies, 2023, vol. 16, issue 15, 1-19

Abstract: Solar photovoltaic (PV) systems often encounter a problem called partial shading condition (PSC), which causes a significant decrease in the system’s output power. To address this issue, meta-heuristic algorithms (MHAs) can be used to perform maximum power point tracking (MPPT) on the system’s multiple-peak P-V curves due to PSCs. Particle swarm optimization was one of the first MHA methods to be implemented for MPPT. However, PSO has some drawbacks, including long settling time and sustained PV output power oscillations during tracking. Hence, some improved MHA methods have been proposed. One approach is to combine a MHA with a deterministic approach (DA) such as P & O method. However, such a hybrid method is more complex to implement. Also, the transition criteria from a DA to a MHA and vice versa is sometimes difficult to define. Another approach, as adapted in this paper is to modify the existing MHAs. This includes modifying the search operators or the parameter settings, to enhance exploration or exploitation capabilities of MHAs. This paper proposed to incorporate the stooping behaviour in the golden eagle optimization (GEO) algorithm. Stooping is in fact a hunting technique frequently employed by golden eagles. Inclusion of stooping in the GEO algorithm not only truly model golden eagles’ hunting behaviour but also yields great performance. Stooping behavior only requires one extra parameter. Nevertheless, on average, the proposed method can reduce tracking time by 42.41 % and improve dynamic tracking accuracy by 1.95 % , compared to GEO. Moreover, compared to PSO, GWO, and BA, the proposed method achieves an improvement of 2.66 % , 3.56 % , and 4.24 % in dynamic tracking accuracy, respectively.

Keywords: partial shading condition; maximum power point tracking; photovoltaic system; golden eagle optimizer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/15/5712/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/15/5712/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:15:p:5712-:d:1207025

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5712-:d:1207025