Direct Tilt Controller Design with Disturbance Compensation and Implementation for a Narrow Tilting Electric Vehicle
Mustafa Karamuk () and
Orhan Behic Alankus
Additional contact information
Mustafa Karamuk: Ford Otosan R&D Center, 34885 Istanbul, Turkey
Orhan Behic Alankus: Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Tuzla Campus, 34959 Istanbul, Turkey
Energies, 2023, vol. 16, issue 15, 1-28
Abstract:
Three-wheeled electric city vehicles are becoming popular because they have lower cost and enable motorcycle driving feeling with electric powertrain performance. These vehicles need a driver assistant system, also known as an active tilting stability controller, to provide a safe cornering manoeuvre. Active tilt control methods are direct tilt control (DTC), steering tilt control (STC) and a combination of these methods. In this study, DTC system design with a servo motor actuator with simulation and experimental results are presented. State feedback control with pole placement design has been improved with disturbance compensation control. This novel controller structure enhances the response of DTC and enables a faster-tilting response. Simulation results are given up to 10 m/s speed. Experimental results of the developed method are given up to 3.05 m/s (11 km/h) speed on a three-wheeled electric vehicle. The speed control loop of the servo motor drive unit (SMDU) stabilizes the DTC system. In the state of the art, a proportional derivative controller is commonly used as a tilt controller. By including the speed control loop of SMDU in the tilt control system, the use of the derivative term can be eliminated. The stability effect of the speed control loop is shown by MATLAB analysis, simulations in Simulink and experimental step response test as well.
Keywords: three-wheeled electric vehicles; vehicle dynamics; direct tilt control; state feedback control; disturbance compensation control; servo motor; motor drive unit (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/15/5724/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/15/5724/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:15:p:5724-:d:1207537
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().