Electromagnetic Performance Investigation of Rectangular-Structured Linear Actuator with End Ferromagnetic Poles
Zahoor Ahmad (),
Basharat Ullah,
Faisal Khan,
Shafaat Ullah () and
Irfan Sami
Additional contact information
Zahoor Ahmad: Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan
Basharat Ullah: Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan
Faisal Khan: Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan
Shafaat Ullah: Department of Electrical Engineering, University of Engineering and Technology Peshawar, Bannu Campus, Bannu 28100, Pakistan
Irfan Sami: School of Electrical and Electronics Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
Energies, 2023, vol. 16, issue 15, 1-17
Abstract:
Saving energy from domestic appliances is a focus in the effort to combat energy challenges. Linear compressors are a more efficient alternative to the traditional compressors used in refrigerators, which account for 20–40% of all residential electricity use. This article investigates the new topology of the moving magnet (MM), dual-stator single-mover linear oscillating actuator (DSSM-LOA) for linear compressor application. Both the stators were C-shaped, with coils looped across their end sides. Two permanent magnets (PMs) that were axially magnetized were housed on the mover. The PM structural shape significantly affected its fabrication cost and magnitude of magnetic flux density ( B ). The DSSM-LOA makes use of axially magnetized rectangular-shaped PMs because they are inexpensive and generate high electromagnetic (EM) force density. End ferromagnetic core materials were used to improve the magnetic flux, linking from the stator to the mover. All the design parameters were optimized through parametric analysis using the finite parametric sweep method. Parameters present within the three primary parameters (length, height, and depth) that were assumed constants were optimized, and the optimal dimensions were selected based on the EM force. The investigated DSSM-LOA was contrasted with traditional LOA designs, and they showed significant improvement in EM force per ampere, generally named motor constant (MC), MC per PM mass, MC density, cogging force, and stroke. Additionally, the proposed DSSM-LOA had a simple structure and low cost, and it operated in a feasible range of strokes for linear compressor application.
Keywords: actuator; dual stator; electromagnetic force; linear oscillation; planar structure (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/15/5758/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/15/5758/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:15:p:5758-:d:1208798
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().