Low-Voltage Network Modeling and Analysis with Rooftop PV Forecasts: A Realistic Perspective from Queensland, Australia
Jake Anderson and
Ashish P. Agalgaonkar ()
Additional contact information
Jake Anderson: Energy Queensland, Cairns 4870, Australia
Ashish P. Agalgaonkar: School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong 2500, Australia
Energies, 2023, vol. 16, issue 15, 1-23
Abstract:
Recent years have seen a rapid uptake in distributed energy resources (DER). Such technologies pose a number of challenges to network operators, which ultimately can limit the amount of rooftop solar photovoltaic (PV) systems that can be connected to a network. The objective of this industry-based research was to determine the potential network effects of forecast levels of customer-owned rooftop solar PV on Energy Queensland’s distribution network and formulate functions that can be used to determine such effects without the requirement for detailed network modeling and analysis. In this research, many of Energy Queensland’s distribution feeders were modeled using DIgSILENT PowerFactory and analyzed with forecast levels of solar PV and customer load. Python scripts were used to automate this process, and quasi-dynamic simulation (QDSL) models were used to represent the dynamic volt–watt and volt–var response of inverters, as mandated by the Australian Standard AS/NZS 4777. In analyzing the results, linear relationships were revealed between the number of PV systems on a feeder and various network characteristics. Regression was used to form trend equations that represent the linear relationships for each scenario analyzed. The trend equations provide a way of approximating network characteristics for other feeders under various levels of customer-owned rooftop solar PV without the need for detailed modeling.
Keywords: distributed energy resource; solar PV penetration; voltage rise; network constraints; network modeling automation; reverse power flow; inverter energy systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/15/5834/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/15/5834/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:15:p:5834-:d:1211808
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().