Numerical Analysis of Crashworthiness on Electric Vehicle’s Battery Case with Auxetic Structure
Liviu I. Scurtu,
Ioan Szabo () and
Marius Gheres
Additional contact information
Liviu I. Scurtu: Automotive Engineering and Transport Department, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
Ioan Szabo: Automotive Engineering and Transport Department, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
Marius Gheres: Automotive Engineering and Transport Department, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
Energies, 2023, vol. 16, issue 15, 1-18
Abstract:
Due to the reduction in pollutant emissions, the number of electric vehicles has experienced rapid growth in worldwide traffic. Vehicles equipped with batteries represent a greater danger of explosion and fire in the case of traffic accidents, which is why new protective systems and devices have been designed to improve impact safety. Through their design and construction, auxetic structures can ensure the efficient dissipation of impact energy, reducing the risk of battery damage and maintaining the safety of vehicle occupants. In this paper, we analyze the crashworthiness performance of a battery case equipped with an energy absorber with a particular shape based on a re-entrant auxetic model. Simulations were performed at a velocity of 10 m/s and applied to the battery case with a rigid impact pole, a configuration justified by most accidents occurring at a low velocity. The results highlight that by using auxetic structures in the construction of the battery case, the impact can be mitigated by the improved energy absorber placed around the battery case, which leads to a decrease in the number of damaged cells by up to 35.2%. In addition, the mass of the improved energy absorbers is lower than that of the base structure.
Keywords: electric vehicle; battery; impact; auxetic structure; re-entrant auxetic structure; mechanical stresses (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/15/5849/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/15/5849/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:15:p:5849-:d:1212333
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().