Challenges and Opportunities for Lithium Extraction from Geothermal Systems in Germany—Part 3: The Return of the Extraction Brine
Valentin Goldberg (),
Ali Dashti,
Robert Egert,
Binil Benny,
Thomas Kohl and
Fabian Nitschke
Additional contact information
Valentin Goldberg: Chair for Geothermal Energy and Reservoir Technology, Institute of Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe, Germany
Ali Dashti: Chair for Geothermal Energy and Reservoir Technology, Institute of Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe, Germany
Robert Egert: Energy and Environment Science and Technology Directorate, Idaho National Laboratory, Idaho Falls, ID 83415, USA
Binil Benny: Department of Civil and Environmental Engineering, Environmental Engineering, Bochum University of Applied Sciences, Am Hochschulcampus 1, 44801 Bochum, Germany
Thomas Kohl: Chair for Geothermal Energy and Reservoir Technology, Institute of Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe, Germany
Fabian Nitschke: Chair for Geothermal Energy and Reservoir Technology, Institute of Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe, Germany
Energies, 2023, vol. 16, issue 16, 1-21
Abstract:
Lithium (Li) is considered a crucial element for energy transition due to its current irreplaceability in Li-ion batteries, particularly in electric vehicles. Market analysis indicates that Germany’s future automotive sector and planned battery cell production will necessitate significant quantities of global lithium production. At the same time, only 1% of the world’s Li production is currently sourced from Europe. Recently, geothermal brines in Germany have gained attention as a potential local raw material source. These brines exhibit elevated Li concentrations and substantial flow rates in geothermal plants, suggesting the possibility of viable local production. However, a comprehensive full-scale Li extraction process from geothermal brines is yet to be established, and uncertainties persist regarding its long-term behavior. To address this, a generic model based on the geothermal settings of the Upper Rhine Graben was developed, simulating a 30-year operational period for Li extraction. The simulation revealed a 40% depletion of lithium during the observation period, while heat production remained constant. Nonetheless, the model also demonstrated a mean Li production of 231 t per year (equivalent to 1230 t per year of lithium carbonate equivalent), which could significantly enhance the economic prospects of a geothermal power plant and, if applied to multiple plants, reduce Germany’s dependence on global lithium imports. The primary factor influencing productivity is the achievable flow rate, as it directly impacts access to the raw material, hence, emphasizing the importance of detailed reservoir exploration and development in optimizing future lithium production from geothermal brines.
Keywords: geothermal energy; direct lithium extraction; numerical modelling; reservoir model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/16/5899/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/16/5899/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:16:p:5899-:d:1213759
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().