Limits on the Range and Rate of Change in Power Take-Off Load in Ocean Wave Energy Conversion: A Study Using Model Predictive Control
Jeremy W. Simmons and
James D. Van de Ven ()
Additional contact information
Jeremy W. Simmons: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
James D. Van de Ven: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
Energies, 2023, vol. 16, issue 16, 1-17
Abstract:
Previous work comparing power take-off (PTO) architectures for ocean wave-powered reverse osmosis suggests that variable displacement in the wave energy converter (WEC)-driven pump does not offer a significant performance advantage. A limitation of that study is that the WEC was subject to a constant load within a given sea state (“Coulomb damping”) and did not account for controlled, moment-to-moment variation of the PTO load enabled by a variable displacement pump. This study explores the potential performance advantage of a variable PTO load over Coulomb damping. Model predictive control is used to provide optimal load control with constraints on the PTO load. The constraints include minimum and maximum loads and a limit on the rate of load adjustment. Parameter studies on these constraints enable conclusions about PTO design requirements in addition to providing an estimated performance advantage over Coulomb damping. Numerical simulation of the Oyster 1 WEC is carried out with performance weighted by historical sea state data from Humboldt Bay, CA. The results show a performance advantage of up to 20% higher yearly-average power absorption over Coulomb damping. Additionally, the parameter studies suggest that the PTO load should be adjustable down to at least 25% of the maximum load and should be adjustable between the minimum and maximum loads within a few seconds.
Keywords: wave energy conversion; WEC; power take-off; PTO; load control; model predictive control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/16/5909/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/16/5909/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:16:p:5909-:d:1214232
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().