Performance Evaluation of Aquaponics-Waste-Based Biochar as a Cathode Catalyst in Sediment Microbial Fuel Cells for Integrated Multitrophic Aquaculture Systems
Kiran K. Jayaraj,
Prakash Saravanan and
Gourav Dhar Bhowmick ()
Additional contact information
Kiran K. Jayaraj: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
Prakash Saravanan: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
Gourav Dhar Bhowmick: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
Energies, 2023, vol. 16, issue 16, 1-17
Abstract:
The sustainable development of aquaculture faces a significant challenge due to the need for the frequent treatment of aquacultural waste. This research presents a pioneering solution by concurrently utilizing aquacultural waste to produce biochar and enhancing a sediment microbial fuel cell (SMFC)’s treatment efficacy for waste generated from the integrated multitrophic aquaculture (IMTA) system. The water quality parameters of the aquacultural pond water were analyzed, and synthetic wastewater was prepared to validate the system’s efficiency. Over a period of more than 50 days, the SMFC was operated and monitored, yielding an average chemical oxygen demand (COD) removal efficiency of 86.31 ± 2.18%. The maximum operating voltage of the SMFC reached 0.422 V on the 21st day of operation when connected to an external resistance of 975 Ω. A novel-activated aquacultural biochar catalyst was synthesized from aquaponics waste and used as a cathode catalyst, substantially improving the SMFC’s performance. Characterization studies demonstrated that the aquacultural biochar catalyst was an active electrocatalyst, accelerating the oxygen reduction reaction rate and leading to increased power output and overall efficiency of the SMFC. The SMFC utilizing the aquacultural-waste-based biochar cathode catalyst showcased the highest maximum power density, with a range of 101.63 mW/m 2 (1693.83 mW/m 3 ), and the lowest internal resistance, indicating superior performance. These results validate the reliability of implementing SMFCs in actual aquaculture systems. A novel modular design for SMFC reactor-assisted small-scale integrated poultry–fish culture systems is proposed for further practical application in real-life aquaculture settings. This research contributes to finding sustainable and effective methods for waste treatment for aquaculture, promoting the development of environmentally friendly practices in the industry.
Keywords: aquaculture waste; biochar; electrocatalyst; integrated multitrophic aquaculture; sediment microbial fuel cells (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/16/5922/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/16/5922/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:16:p:5922-:d:1214587
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().