An Optimized Switching Strategy Based on Gate Drivers with Variable Voltage to Improve the Switching Performance of SiC MOSFET Modules
Jixiang Tan () and
Zhongfu Zhou
Additional contact information
Jixiang Tan: Department of Electronic and Electrical Engineering, Faculty of Science and Engineering, Swansea University Bay Campus, Swansea SA1 8EN, UK
Zhongfu Zhou: Department of Electronic and Electrical Engineering, Faculty of Science and Engineering, Swansea University Bay Campus, Swansea SA1 8EN, UK
Energies, 2023, vol. 16, issue 16, 1-16
Abstract:
This paper proposes an optimized switching strategy (OSS) based on a silicon carbide (SiC) MOSFET gate driver with variable voltage, which allows simultaneous variations in several different parameters to optimize the switching performance of semiconductor devices. As a relatively new device, the SiC MOSFET shines in the field of high power density and high-frequency switching; it has become a popular solution for electric vehicles and renewable energy conversion systems. However, the increase in voltage and current slope caused by high switching speeds inevitably increases the overshoot and oscillation in a circuit and can even generate additional losses. The principle of this new control strategy is to change the voltage and current in the turn-on and turn-off stages by changing the gate driver’s voltage. That is, we reduced the drive’s voltage after a certain time delay and maintained it for a period of time, thus directly controlling the slopes of di/dt and dv/dt. This study focused on the optimization of the SiC MOSFET by changing the time delay preceding the decrease in the voltage of the gate driver, analyzing and calculating the optimal time delay before the decrease in the voltage of the gate driver, and verifying the findings using LTspice simulation software. The simulated results were compared and analyzed with hard-switching strategies. The results showed that the proposed OSS can improve the switching performance of SiC MOSFETs.
Keywords: optimal-switching strategy; gate driver circuit; silicon carbide MOSFET; voltage and current overshoot; LTspice (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/16/5984/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/16/5984/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:16:p:5984-:d:1217642
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().