Effect of Rotating Channel Turning Section Clearance Size on Heat Transfer Characteristics of Supercritical Pressure Hydrocarbon Fuel
Mengqiang Dong () and
Hongyan Huang
Additional contact information
Mengqiang Dong: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Hongyan Huang: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Energies, 2023, vol. 16, issue 16, 1-18
Abstract:
For the problem of power generation turbine blade ablation in hypersonic vehicles, hydrocarbon fuel carried by the vehicle is used to cool the turbine blades. In order to fully utilize the cooling capacity of hydrocarbon fuel, the structure of the cooling channels needs to be optimized. In this study, a variable clearance hydrocarbon fuel cooling channel is applied for the first time to the rotating turbine blades of a hypersonic vehicle to enhance the heat transfer ability of hydrocarbon fuel. The effect of clearance size on the heat transfer performance of hydrocarbon fuel under rotating conditions is investigated. The accuracy of the calculations is verified by comparison with experimental data. The results of the study show that the heat transfer performance can be significantly improved by changing the clearance of the turning section. The clearance size 2.5 D channel has the highest thermal performance with a maximum improvement of 1.8 times. The law of change of thermal performance is affected by crossing the critical temperature point, as it is different before and after the crossing. Thermal performance changes from decreasing then increasing to increasing then decreasing as the clearance size increases for high rotation speed conditions as the temperature of the entrance straddles the critical temperature. The Nusselt number first increases and then decreases for all channels with different clearance sizes with an increasing rotational speed. The friction factor changes from first increasing and then decreasing to decreasing and then increasing as the clearance size increases for high rotation speed conditions as the temperature of the entrance straddles the critical temperature.
Keywords: turning section clearance size; friction factor; thermal performance; rotation speed; hydrocarbon fuel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/16/6051/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/16/6051/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:16:p:6051-:d:1220027
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().