EconPapers    
Economics at your fingertips  
 

A Literature Review on the Optimal Placement of Static Synchronous Compensator (STATCOM) in Distribution Networks

Umme Mumtahina (), Sanath Alahakoon and Peter Wolfs
Additional contact information
Umme Mumtahina: School of Engineering and Technology, Central Queensland University, Rockhampton 4701, Australia
Sanath Alahakoon: School of Engineering and Technology, Central Queensland University, Rockhampton 4701, Australia
Peter Wolfs: EleXsys Ptd Ltd., Brisbane 4072, Australia

Energies, 2023, vol. 16, issue 17, 1-38

Abstract: The existing distribution networks were designed at a time when there was virtually no embedded generation. The design methods ensured the voltage at various parts of the network remained within the limits required by standards, and for the most part, this was very successfully achieved. As Distributed Energy Resources (DERs) started to grow, the rise in voltage due to injected currents and the local impedances started to push network voltages toward, and even above, the desired upper limits. Voltage limits are based on typical appliance requirements, and long-term over-voltages will ultimately result in unacceptably short appliance life spans. Distribution Static Compensators (dSTATCOMs) are shunt-connected devices that can improve low-voltage networks’ performance by injecting currents that do not transfer real power. The currents can be reactive, negative or zero sequence, or harmonic. System performance can be improved by reducing conduction loss, improving voltage profile and voltage balance, or reducing Total Harmonic Distortion (THD). To obtain these benefits, optimal sizes of dSTATCOMs need to be placed at optimal locations within the distribution network. This paper has considered seventy research articles published over the past years related to the optimal placement and sizing of dSTATCOMs. In this study, minimization of power losses, voltage profile improvement, loadablity factor, voltage sag mitigation, and reduction in annual operating costs are considered fitness functions that are subjected to multiple constraint sets. The optimization algorithms found in the literature are categorized into six methods: analytical methods, artificial neural network-based methods, sensitivity approaches, metaheuristic methods, a combination of metaheuristic and sensitivity analysis, and miscellaneous. This study also presents a comparison among distribution network types, load flow methods optimization tools, etc. Therefore, a comprehensive review of optimal allocation and sizing of dSTATCOMs in distribution networks is presented in this paper, and guidance for future research is also provided.

Keywords: optimal placement; optimal sizing; dSTATCOM; distribution network; optimization algorithms (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/17/6122/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/17/6122/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:17:p:6122-:d:1222715

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6122-:d:1222715