EconPapers    
Economics at your fingertips  
 

NVH Analysis and Optimization of Construction Hoist Drive System

Bo Huang (), Bangyu Tan, Jian Wang, Kang Liu and Yuhang Zhang
Additional contact information
Bo Huang: School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Bangyu Tan: School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Jian Wang: School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Kang Liu: School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Yuhang Zhang: School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China

Energies, 2023, vol. 16, issue 17, 1-30

Abstract: The construction hoist drive system is a critical component of the construction hoist, and high speed and low vibration noise are essential development directions. In order to improve the NVH level of the construction hoist drive system, this paper carries out research and analysis of construction hoist drive system excitation, establishes the drive system rigid-flexible coupling dynamics model, and completes the establishment of the vibration and noise model of the drive system, simulation analysis, and optimization work. Ansys Motor CAD 2020 was used to establish the parametric model of the asynchronous motor and it was combined with the virtual work method to calculate Maxwell’s electromagnetic force to arrive at the radial electromagnetic force as the main cause of electromagnetic noise. For the mechanical excitation generated by the gearbox, the time-varying stiffness excitation, mesh shock excitation, and transmission error excitation are considered, and the transmission error of helical gears under different working conditions is calculated by combining it with Romax software 2020. The rigid-flexible coupling model of the construction hoist drive system is established. The load distribution analysis of the unit length of the tooth surface is completed for the first- and third-stage helical gears under different working conditions. The primary source of the drive system excitation is the tooth surface bias load. Based on the dynamic response analysis theory of the vibration superposition method, the maximum vibration speed of the drive system was analyzed by Romax. The maximum noise value of 78.8 dB was calculated from the acoustic power simulation of the drive system using Actran acoustic software 2022 in combination with acoustic theory, and the magnetic density amplitude of the stator teeth of the asynchronous motor was optimized based on the microscopic shaping design of the helical gear by Romax. The vibration and noise simulation of the optimized drive system shows that the vibration value is reduced to 0.75 mm/s, and the maximum noise is reduced to 70.2 dB, which is 10.9% lower than before the optimization. The overall NVH level has been improved. The optimization method to reduce the vibration noise of the drive system is explored, which can be used for vibration noise prediction and control during the development of the construction hoist drive system.

Keywords: construction hoist drive system; mechanical excitation; electromagnetic excitation; vibration noise; NVH optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/17/6199/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/17/6199/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:17:p:6199-:d:1225786

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6199-:d:1225786