EconPapers    
Economics at your fingertips  
 

Controls of the Sandbody Scale and Fault Throw on the Lithology and Composite Reservoir Formation in the Baoyunting Slope, East China Sea

Sujie Yan, Xinghai Zhou, Renhai Pu () and Changyu Fan
Additional contact information
Sujie Yan: Department of Geology, Northwest University, Xi’an 710069, China
Xinghai Zhou: Sinopec Shanghai Offshore Oil and Gas Company, China Petroleum & Chemical Corporation, Shanghai 200120, China
Renhai Pu: Department of Geology, Northwest University, Xi’an 710069, China
Changyu Fan: Department of Geology, Northwest University, Xi’an 710069, China

Energies, 2023, vol. 16, issue 17, 1-25

Abstract: Under the conditions of many faults, sandbodies, and hydrocarbon sources on the slopes of faulted basins where structural traps are scarce, only a few sandbodies are capable of forming hydrocarbon pools, while most sandbodies act as aquifers. This situation presents a challenge for predicting favorable hydrocarbon accumulation areas and understanding controlling factors. The Pinghu Formation reservoirs in the Baoyunting nose structure of the Xihu Sag in the East China Sea exemplify this characteristic. Among the 19 small-scale oil and gas reservoirs discovered in this area, 10 are faulted sandbody composite traps and 9 are lithological traps, while the majority of the remaining sand layers, especially the thick layers, act as aquifers, resulting in significantly lower accumulation probabilities compared to the adjacent northern and southern areas. We analyzed the relationship between the sandstone thickness and the amplitude through the 1-D forward modeling of wells and dissected the 3-D seismic event to obtain the planar distribution of a single sandbody. Further comprehensive research on fault sealing and kinetic reservoir formation processes suggests that the gas pool formation in this area is closely related to fault sealing and lateral oil and gas transport. A small fault-to-caprock ratio is beneficial for the sealing of mudstone caprocks, while a large fault-to-sand thickness ratio is beneficial for the lateral sealing of faults and the formation of fault–sand composite pools. The tidal microfacies sandbody has a small scale, poor lateral transport ability, and a low probability of gas reservoir formation. The barrier and delta front sandbodies have a large scale, good lateral transport, and a high probability of reservoir formation. Based on the above methods, favorable pool formation traps were identified in the area, and high-yield gas wells were drilled.

Keywords: fault-to-caprock ratio; fault–sand ratio; sedimentary microfacies; fracture sealing; hydrocarbon transport; controlling reservoirs (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/17/6212/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/17/6212/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:17:p:6212-:d:1226162

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6212-:d:1226162