Design and Implementation of Self-Limiting Two-Stage LC Oscillators Using Cascade Structure of Monolithic CCIIs as Active Elements
Ivaylo Pandiev ()
Additional contact information
Ivaylo Pandiev: Faculty of Electronic Engineering and Technologies, Technical University of Sofia, 1000 Sofia, Bulgaria
Energies, 2023, vol. 16, issue 17, 1-18
Abstract:
This paper presents the structure and principle of operation of two circuit configurations of self-limiting LC oscillators using monolithic positive second-generation current conveyors (CCII+s), that are implemented using Current-Feedback Operational Amplifiers (CFOAs) with an available compensation pin ( Z ). The proposed LC oscillators are synthesized using a systematic approach in the design of analog electronic circuits and can be considered as variants of the basic three-point oscillators, implemented using transistors (BJTs or FETs). Based on the analysis of the structure and electrical parameters of the CFOAs with a compensation pin ( Z ), electronic circuits of oscillators with two-stage amplifier blocks are synthesized. The characteristic equations and self-oscillation conditions are derived for the obtained analog circuits, and recommendations for designing circuits with arbitrary frequencies are defined. To verify the efficiency of the proposed LC oscillators, an experimental study is performed in the frequency range from 100 kHz to 10 MHz. The CFOAs AD844A with an external terminal z of the internal current conveyor are used as active elements. The obtained experimental results well match the results of the simulation modelling and the parameters based on the derived analytical expressions. The developed LC oscillators are intended to be used in schematic configurations of gas sensors based on surface acoustic wave (SAW) resonators.
Keywords: analog circuits; LC oscillators; circuit analysis; CCII; CFOA; feedback; SAW resonators (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/17/6226/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/17/6226/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:17:p:6226-:d:1226415
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().