Analysis of Secondary Controller on MTDC Link with Solar PV Integration for Inter-Area Power Oscillation Damping
Oluwafemi Emmanuel Oni () and
Omowunmi Mary Longe
Additional contact information
Oluwafemi Emmanuel Oni: Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa
Omowunmi Mary Longe: Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa
Energies, 2023, vol. 16, issue 17, 1-18
Abstract:
Integration of renewable energy sources is important in limiting the continuous environmental degradation and emissions caused by energy generation from fossil fuels and thus becoming a better alternative for a large-scale power mix. However, an adequate analysis of the interaction with the alternating current (AC) network during network disturbance, especially during inter-area power (IAP) oscillations is needed. Insufficient damping of oscillations can significantly impact the reliability and effective operation of a whole power system. Therefore, this paper focuses on the stability of the modified Kundur two-area four-machine (MKTAFM) system. A robust secondary controller is proposed and implemented on a line commutated converter (LCC)-based multi-terminal high voltage direct current (MTDC) system. The solution consists of a local generator controller and the LCC MTDC (LMTDC) system, voltage-dependent current order limiter, and extinction angle controller. The proposed robust controller is designed for the LMTDC systems to further dampen the inter-area power oscillations. Three operational scenarios were implemented in this study, which are the local generator controller and double circuits AC line, local generator controller with LMTDC controllers, and local generator controller with LMTDC controllers and secondary controller. The simulation result carried out on PSCAD/EMTDC recorded better damping of the inter-area power oscillation with LMTDC. A considerable improvement of 100% damping of the IAP oscillations was observed when a secondary controller was implemented on the LMTDC.
Keywords: inter-area power oscillation; two-area four-machine network; solar PV; high voltage direct current; PSCAD; secondary controller (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/17/6295/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/17/6295/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:17:p:6295-:d:1228439
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().