Time Series Forecasting for Energy Production in Stand-Alone and Tracking Photovoltaic Systems Based on Historical Measurement Data
Mateusz Sumorek and
Adam Idzkowski ()
Additional contact information
Mateusz Sumorek: Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland
Adam Idzkowski: Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland
Energies, 2023, vol. 16, issue 17, 1-23
Abstract:
This article presents a time series analysis for predicting energy production in photovoltaic (PV) power plant systems, namely fixed and solar-tracking ones, which were located in the north-east of Poland. The purpose of one-day forecasts is to determine the effectiveness of preventive actions and manage power systems effectively. The impact of climate variables affecting the production of electricity in the photovoltaic systems was analyzed. Forecasting models based on traditional machine learning (ML) techniques and multi-layer perceptron (MLP) neural networks were created without using solar irradiance as an input feature to the model. In addition, a few metrics were selected to determine the quality of the forecasts. The preparation of the dataset for constructing the forecasting models was discussed, and some ways for improving the metrics were given. Furthermore, comparative analyses were performed, which showed that the MLP neural networks used in the regression problem provided better results than the MLP classifier models. The Diebold–Mariano (DM) test was applied in this study to distinguish the significant differences in the forecasting accuracy between the individual models. Compared to KNN (k-nearest neighbors) or ARIMA models, the best results were obtained for the simple linear regression, MLPRegressor, and CatBoostRegressor models in each of the investigated photovoltaic systems. The R-squared value for the MLPRegressor model was around 0.6, and it exceeded 0.8 when the dataset was split and separated into months.
Keywords: renewable energy; energy forecasting; machine learning; deep learning; linear regression; neural networks; time series analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/17/6367/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/17/6367/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:17:p:6367-:d:1231620
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().