EconPapers    
Economics at your fingertips  
 

Feasibility of Green Hydrogen-Based Synthetic Fuel as a Carbon Utilization Option: An Economic Analysis

J. Lemuel Martin and S. Viswanathan ()
Additional contact information
J. Lemuel Martin: Cambridge Centre for Advanced Research and Education in Singapore (CARES), 1 CREATE Way, Singapore 138602, Singapore
S. Viswanathan: Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore 637141, Singapore

Energies, 2023, vol. 16, issue 17, 1-20

Abstract: Singapore has committed to achieving net zero emissions by 2050, which requires the pursuit of multiple decarbonization pathways. CO 2 utilization methods such as fuel production may provide a fast interim solution for carbon abatement. This paper evaluates the feasibility of green hydrogen-based synthetic fuel (synfuel) production as a method for utilizing captured CO 2 . We consider several scenarios: a baseline scenario with no changes, local production of synfuel with hydrogen imports, and overseas production of synfuel with CO 2 exports. This paper aims to determine a CO 2 price for synfuel production, evaluate the economic viability of local versus overseas production, and investigate the effect of different cost parameters on economic viability. Using the current literature, we estimate the associated production and transport costs under each scenario. We introduce a CO 2 utilization price (CUP) that estimates the price of utilizing captured CO 2 to produce synfuel, and an adjusted CO 2 utilization price (CCUP) that takes into account the avoided emissions from crude oil-based fuel production. We find that overseas production is more economically viable compared to local production, with the best case CCUP bounds giving a range of 142–148 $/t CO 2 in 2050 if CO 2 transport and fuel shipping costs are low. This is primarily due to the high cost of hydrogen feedstock, especially the transport cost, which can offset the combined costs of CO 2 transport and fuel shipping. In general, we find that any increase in the hydrogen feedstock cost can significantly affect the CCUP for local production. Sensitivity analysis reveals that hydrogen transport cost has a significant impact on the viability of local production and if this cost is reduced significantly, local production can be cheaper than overseas production. The same is true if the economies of scale for local production is significantly better than overseas production. A significantly lower carbon capture cost can also the reduce the CCUP significantly.

Keywords: synfuel production; alternative fuels; green hydrogen; carbon capture; carbon utilization; economic analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/17/6399/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/17/6399/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:17:p:6399-:d:1232715

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6399-:d:1232715