The Effect of Leading-Edge Wavy Shape on the Performance of Small-Scale HAWT Rotors
Riad Morina and
Yahya Erkan Akansu ()
Additional contact information
Riad Morina: Faculty of Mechanical Engineering, University of Prishtina “Hasan Prishtina”, 10000 Prishtina, Kosovo
Yahya Erkan Akansu: Faculty of Mechanical Engineering, Niğde Ömer Halisdemir University, Niğde 51240, Turkey
Energies, 2023, vol. 16, issue 17, 1-23
Abstract:
The purpose of this experimental work was to investigate the role of the leading-edge wavy shape technique on the performance of small-scale HAWT fixed-pitch rotor blades operating under off-design conditions. Geometric parameters such as amplitude and wavelength were considered design variables to generate five different wavy shape blade models in order to increase the aerodynamic performance of the rotor with a diameter of 280 mm. A dedicated airfoil type S822 for small wind turbine application from the NREL Airfoil Family was chosen to fulfil both the aerodynamic and structural aspects of the blades. Rotor models were tested in a wind tunnel for different wind speeds while maintaining constant rotational speed to provide the blade-tip chord Reynolds number of 4.7 × 10 4 . The corrected tunnel data, in terms of power coefficients and tip-speed ratios, were compared first with the literature to validate the experimental approach, and then among themselves. It was observed that for minimal sizes of tubercles, the performance of the rotor increases by about 40% compared to the RB1 baseline rotor model for a low tip-speed ratio. Conversely, for the maximum size of the tubercles, there is a marked decrease of about 51% of the rotor performance for a moderate tip-speed ratio compared to the RB1 rotor model. Among these models, specifically, the RB2 rotor model with the smallest values of amplitude and wavelength provides a 2.8% higher peak power coefficient compared to the RB1 rotor model, and at the same time preserves higher performance values for a broad range of tip-speed ratios.
Keywords: small HAWT rotor; blade design; power coefficient; passive flow control; bio-inspired technique; leading-edge tubercles; low Reynolds number; fixed-pitch rotor; wind tunnel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/17/6405/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/17/6405/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:17:p:6405-:d:1232805
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().