EconPapers    
Economics at your fingertips  
 

A Robust Conic Programming Approximation to Design an EMS in Monopolar DC Networks with a High Penetration of PV Plants

Oscar Danilo Montoya (), Federico Martin Serra () and Walter Gil-González
Additional contact information
Oscar Danilo Montoya: Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
Federico Martin Serra: Laboratorio de Control Automático (LCA), Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis—CONICET, Villa Mercedes, San Luis 5730, Argentina
Walter Gil-González: Department of Electrical Engineering, Universidad Tecnológica de Pereira, Pereira 660003, Colombia

Energies, 2023, vol. 16, issue 18, 1-17

Abstract: This research addresses the problem regarding the efficient operation of photovoltaic (PV) plants in monopolar direct current (DC) distribution networks from a perspective of convex optimization. PV plant operation is formulated as a nonlinear programming (NLP) problem while considering two single-objective functions: the minimization of the expected daily energy losses and the reduction in the expected CO 2 emissions at the terminals of conventional generation systems. The NLP model that represents the energy management system (EMS) design is transformed into a convex optimization problem via the second-order cone equivalent of the product between two positive variables. The main contribution of this research is that it considers the uncertain nature of solar generation and expected demand curves through robust convex optimization. Numerical results in the monopolar DC version of the IEEE 33-bus grid demonstrate the effectiveness and robustness of the proposed second-order cone programming model in defining an EMS for a monopolar DC distribution network. A comparative analysis with four different combinatorial optimizers is carried out, i.e., multiverse optimization (MVO), the salp swarm algorithm (SSA), the particle swarm optimizer (PSO), and the crow search algorithm (CSA). All this is achieved while including an iterative convex method (ICM). This analysis shows that the proposed robust model can find the global optimum for two single-objective functions. The daily energy losses are reduced by 44.0082% with respect to the benchmark case, while the CO 2 emissions (kg) are reduced by 27.3771%. As for the inclusion of uncertainties, during daily operation, the energy losses increase by 22.8157%, 0.2023%, and 23.7893% with respect to the benchmark case when considering demand uncertainty, PV generation uncertainty, and both. Similarly, CO 2 emissions increase by 11.1854%, 0.9102%, and 12.1198% with regard to the benchmark case. All simulations were carried out using the Mosek solver in the Yalmip tool of the MATLAB software.

Keywords: robust convex optimization; energy management system; photovoltaic plants; monopolar direct current networks; daily energy losses; carbon dioxide emissions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/18/6470/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/18/6470/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:18:p:6470-:d:1234966

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6470-:d:1234966