EconPapers    
Economics at your fingertips  
 

Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage

Izabela Rojek (), Dariusz Mikołajewski, Adam Mroziński and Marek Macko
Additional contact information
Izabela Rojek: Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Dariusz Mikołajewski: Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Adam Mroziński: Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
Marek Macko: Faculty of Mechatronics, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

Energies, 2023, vol. 16, issue 18, 1-26

Abstract: Overview: Photovoltaic (PV) systems are widely used in residential applications in Poland and Europe due to increasing environmental concerns and fossil fuel energy prices. Energy management strategies for residential systems (1.2 million prosumer PV installations in Poland) play an important role in reducing energy bills and maximizing profits. Problem: This article aims to check how predictable the operation of a household PV system is in the short term—such predictions are usually made 24 h in advance. Methods: We made a comparative study of different energy management strategies based on a real household profile (selected energy storage installation) based on both traditional methods and various artificial intelligence (AI) tools, which is a new approach, so far rarely used and underutilized, and may inspire further research, including those based on the paradigm of Industry 4.0 and, increasingly, Industry 5.0. Results: This paper discusses the results for different operational scenarios, considering two prosumer billing systems in Poland (net metering and net billing). Conclusions: Insights into future research directions and their limitations due to legal status, etc., are presented. The novelty and contribution lies in the demonstration that, in the case of domestic PV grids, even simple AI solutions can prove effective in inference and forecasting to support energy flow management and make it more predictable and efficient.

Keywords: artificial intelligence (AI) PV energy; distributed energy resources (DER); energy storage system; optimization; energy forecasting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/18/6613/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/18/6613/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:18:p:6613-:d:1239524

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6613-:d:1239524