Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland—Swietokrzyskie Voivodeship
Michal Pikus () and
Jarosław Wąs
Additional contact information
Michal Pikus: AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Applied Computer Science, av. Mickiewicza 30, 30-059 Krakow, Poland
Jarosław Wąs: AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Applied Computer Science, av. Mickiewicza 30, 30-059 Krakow, Poland
Energies, 2023, vol. 16, issue 18, 1-15
Abstract:
Forecasting electricity demand is of utmost importance for ensuring the stability of the entire energy sector. However, predicting the future electricity demand and its value poses a formidable challenge due to the intricate nature of the processes influenced by renewable energy sources. Within this piece, we have meticulously explored the efficacy of fundamental deep learning models designed for electricity forecasting. Among the deep learning models, we have innovatively crafted recursive neural networks (RNNs) predominantly based on LSTM and combined architectures. The dataset employed was procured from a SolarEdge designer. The dataset encompasses daily records spanning the past year, encompassing an exhaustive collection of parameters extracted from solar farm (based on location in Central Europe (Poland Swietokrzyskie Voivodeship)). The experimental findings unequivocally demonstrated the exceptional superiority of the LSTM models over other counterparts concerning forecasting accuracy. Consequently, we compared multilayer DNN architectures with results provided by the simulator. The measurable results of both DNN models are multi-layer LSTM-only accuracy based on R2—0.885 and EncoderDecoderLSTM R2—0.812.
Keywords: AI; forecasting; LSTM; DNN; PV (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/18/6632/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/18/6632/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:18:p:6632-:d:1240507
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().