EconPapers    
Economics at your fingertips  
 

Improving Efficiency of a Pole-Changing Vernier Machine Considering Residual Magnetic Flux Density

Sung-Hyun Lee, Jung-Woo Kwon and Byung-Il Kwon ()
Additional contact information
Sung-Hyun Lee: Department of Electrical and Electronic Engineering, Hanyang University, Ansan 15588, Republic of Korea
Jung-Woo Kwon: Department of Electrical and Electronic Engineering, Hanyang University, Ansan 15588, Republic of Korea
Byung-Il Kwon: Department of Electrical and Electronic Engineering, Hanyang University, Ansan 15588, Republic of Korea

Energies, 2023, vol. 16, issue 18, 1-12

Abstract: This paper presents the efficiency improvement of a pole-changing vernier machine (PCVM) by considering the residual magnetic flux density ( B r ) of low coercivity force (LCF) permanent magnets (PMs). The PCVM operates in two modes: vernier machine (VM) mode and permanent magnet synchronous machine (PMSM) mode, achieved through pole-changing. Pole-changing involves reversing the magnetic flux direction of LCF PM to alter the number of rotor pole pairs. By changing the number of rotor pole pairs, the PCVM operates as a VM mode at low speeds, providing high torque, and as a PMSM mode at high speeds, offering high efficiency. To achieve this, a combination of high coercivity force (HCF) PM and LCF PM is utilized in a single structure. The magnetic flux direction in the LCF PM is determined by B r , and the highest efficiency is achieved when B r reaches its maximum value | B r m |. This paper focuses on improving efficiency by obtaining B r m in VM mode and − B r m in PMSM mode through the design process. Additionally, finite element analysis (FEA) is employed to compare the performance of the improved model, which considers B r , with that of the conventional model, designed without considering B r . The improved model achieves higher B r values in each mode compared to the conventional model, resulting in increased torque density. Consequently, this leads to improved efficiency.

Keywords: efficiency improvement; pole-changing; residual magnetic flux density; vernier machine; permanent magnet synchronous machine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/18/6707/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/18/6707/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:18:p:6707-:d:1243294

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6707-:d:1243294