A Carbon Reduction and Waste Heat Utilization Strategy for Generators in Scalable PV—Diesel Generator Campus Microgrids
Stephanus Erasmus () and
Jacques Maritz
Additional contact information
Stephanus Erasmus: Grid Related Research Group, Department of Soil, Crop and Climate Sciences, University of the Free State (UFS), Bloemfontein 9301, South Africa
Jacques Maritz: Grid Related Research Group, Department of Engineering Sciences, University of the Free State (UFS), Bloemfontein 9301, South Africa
Energies, 2023, vol. 16, issue 18, 1-12
Abstract:
The increased unavailability of electricity from the National Utility in South Africa, coupled with the extreme conditions of rural areas and general lack of infrastructure, leads to the setup of unique microgrids to utilize the conditions available. One such unique microgrid, a scalable photovoltaic (PV)-Diesel generator microgrid, is situated in the Phuthaditjhaba district on the University of the Free State (UFS) Qwaqwa campus in South Africa. Waste heat and greenhouse gas (GHG) emissions are considered inherent by-products of campus hybrid PV—Diesel generator microgrids with high utilization opportunities for both heat exchange and carbon offsets. This paper presents confirmation that available waste heat from a typical rural campus microgrid can be stored through the use of a rock bed thermal energy storage (TES) system. It was identified that, through the temperature profile of the stored waste heat, thermal energy can be utilized through deferable (time-independent) and non-deferable (time-dependent) strategies. Both utilization strategies are dependent on the type of application or applications chosen through demand-side management. Carbon emission reduction takes place through the reduction of diesel consumption due to the utilization of waste heat for applications previously served by diesel generators. Design novelties are presented using the concept of rock bed TES within a microgrid setup.
Keywords: waste heat utilization; carbon reduction; campus microgrids; thermal energy storage; variability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/18/6749/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/18/6749/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:18:p:6749-:d:1244962
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().