A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation
Ali Mubarak Al-Qahtani ()
Additional contact information
Ali Mubarak Al-Qahtani: Department of Mechanical Engineering, Jubail Industrial College, Jubail 35819-7888, Saudi Arabia
Energies, 2023, vol. 16, issue 19, 1-16
Abstract:
Lignocellulosic and waste materials, such as sewage sludge, can be broken down into its useful constituents and converted into fuel for engines. This paper investigates microwave pyrolysis to decompose biomass into H 2 and CO (syngas), which may be catalysed in the Fischer–Tropsch (F-T) process to liquid biofuels. Using microwave radiation as the heat source for pyrolysis proves to yield large quantities of gas with higher concentrations of H 2 and CO compared to conventional heating methods. This is largely due to the energy transfer mechanism of microwaves. Pyrolysis parameters such as temperature (which increases with input power), feedstock type, microwave absorber, and biomass moisture content influence syngas yield. Several papers reviewed for this study showed differing optimal conditions for microwave pyrolysis, all being heavily dependent on the biomass used and its composition. However, all researchers agreed on the thermal efficiency of microwave heating and how its material-selective nature can increase syngas yield. Compared to diesel fuels (while processing a similar efficiency and a higher cetane number), FT fuels and specifically pyrolysis may yield the benefit of reduced nitric oxides (NOx), particulate matter (PM), unburnt hydrocarbons (HC) and carbon monoxide (CO) emissions.
Keywords: microwave pyrolysis; syngas; Fischer–Tropsch Synthesis; biofuels; lignocellulosic biomass (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/19/6876/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/19/6876/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:19:p:6876-:d:1250567
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().