EconPapers    
Economics at your fingertips  
 

A Control Design Technology of Isolated Bidirectional LLC Resonant Converter for Energy Storage System in DC Microgrid Applications

You-Kun Tai and Kuo-Ing Hwu ()
Additional contact information
You-Kun Tai: Department of Electrical Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan
Kuo-Ing Hwu: Department of Electrical Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan

Energies, 2023, vol. 16, issue 19, 1-34

Abstract: This paper presents a new control method for a bidirectional DC–DC LLC resonant topology converter. The proposed converter can be applied to power the conversion between an energy storage system and a DC bus in a DC microgrid or bidirectional power flow conversion between vehicle-to-grid (V2G) behavior and grid-to-vehicle (G2V) behavior. Furthermore, such a converter can be applied to energy storage systems for decentralized renewable energy generation systems, such as solar and wind power. In addition, this converter can be combined with a bidirectional inverter to allow energy storage in the system to improve the safety, stability, and power quality of the microgrid. In the proposed circuit structure, we use a bidirectional DC–DC LLC, which has the advantages of a higher voltage conversion ratio, lower part count, simpler control than similar converters such as DAB, CLLC, and L–LLC converters, and bidirectional power flow and electrical isolation. Specifically, to extend the battery life, it can be employed as a control strategy for discharging the energy stored in the battery (SOC) and reducing the temperature rise generated by the internal solid electrolyte interphase (SEI) when discharging the battery under the variation in distributed energy resource (DER) generation and load demand. To realize the bidirectional power conversion without using any auxiliary inductor and only changing the control strategy, the forward step-down power conversion was based on pulse frequency modulation (PFM) control, and the reverse step-up power conversion was based on pulse width modulation (PWM) control. In this paper, we introduce the bidirectional converter topology and its control strategy for the DC microgrid battery energy storage system. Finally, a 500 W prototype is built to verify the effectiveness of the proposed converter.

Keywords: bidirectional DC–DC converter; LLC topology; push–pull topology; resonant converter; zero voltage switching (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/19/6877/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/19/6877/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:19:p:6877-:d:1250569

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6877-:d:1250569