Structural Vulnerability Analysis of Interdependent Electric Power and Natural Gas Systems
Olabode Amusan,
Shuomang Shi,
Di Wu () and
Haitao Liao
Additional contact information
Olabode Amusan: Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58105, USA
Shuomang Shi: Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58105, USA
Di Wu: Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58105, USA
Haitao Liao: Department of Industrial Engineering, University of Arkansas, Fayetteville, AR 72701, USA
Energies, 2023, vol. 16, issue 19, 1-13
Abstract:
The growing use of gas-fired power generators and electricity-driven gas compressors and storage has increased the interdependence between electric power infrastructure and natural gas infrastructure. However, the increasing interdependence may spread the failures from one system to the other, causing subsequent failures in an integrated power and gas system (IPGS). This paper investigates the structural vulnerability of a realistic IPGS based on complex network theory. Different from the existing works with a focus on the static vulnerability analysis for an IPGS, this paper considers both static and dynamic vulnerability analysis. The former focuses on vulnerability analysis under random and selective failures without flow redistribution, while the latter concentrates on vulnerability analysis under cascading failures caused by flow redistribution. Also, different from the existing works with a focus on the IPGS as a whole, we not only analyze the vulnerability of the IPGS but also analyze the vulnerability of the power subsystem (PS) and gas subsystem (GS), in order to understand how the vulnerability of the IPGS is affected by its PS and GS. The analysis results show that (1) if the PS and GS are more susceptible to cascading failures than selective and random failures, the IPGS as a whole is also more vulnerable to cascading failures. (2) There are different dominant factors affecting the IPGS vulnerability under cascading failures and selective failures. Under cascading failures, the GS has a more significant impact on the IPGS vulnerability; under selective failures, the PS has a more important impact on the IPGS vulnerability. (3) The IPGS is more vulnerable to failures on the critical nodes, which are identified from the IPGS as a whole rather than from the individual PS or GS. The results provide insights into the design and planning of IPGSs to improve their overall reliability.
Keywords: structural vulnerability; complex network theory; degree; betweenness; network efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/19/6918/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/19/6918/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:19:p:6918-:d:1252197
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().