A New Method of Building Envelope Thermal Performance Evaluation Considering Window–Wall Correlation
Zhengrong Li,
Yang Si (),
Qun Zhao and
Xiwen Feng
Additional contact information
Zhengrong Li: School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Yang Si: School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Qun Zhao: College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
Xiwen Feng: School of Civil Engineering, Guangzhou University, Guangzhou 510206, China
Energies, 2023, vol. 16, issue 19, 1-25
Abstract:
This study proposes a new method to accurately evaluate the overall building envelope thermal performance considering the window–wall correlation, providing a new tool for building thermal design. Firstly, a non-stationary room heat transfer model is established based on the Resistance-Capacity Network method. The influence of solar heat gain through the windows on the heat transfer process of the walls in the actual environment is considered, and the room’s integrated thermal resistance and integrated heat capacity indexes describing the overall room thermal resilience performance are proposed. Then, a field research test is conducted around Lhasa to obtain the local dwelling information, climate conditions, and indoor thermal environment. Numerical simulations using EnergyPlus are made to verify the effectiveness of the indexes in describing the overall building (maximum difference within 3.67% MBE and 2.92% CVRMSE) based on the field test results. Finally, the proposed envelope thermal performance index is used to analyze the local residential buildings around Lhasa. The results show that the lack of consideration of window–wall correlation has led to the failure of a local newly built building’s actual envelope performance to meet the design requirements. These findings could help to develop the thermal design method of the building envelope.
Keywords: wall; window; envelope thermal performance; thermal resistance; heat capacity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/19/6927/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/19/6927/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:19:p:6927-:d:1252689
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().