Two Steps for Improving Reduced Graphene Oxide/Activated Durian Shell Carbon Composite by Hydrothermal and 3-D Ball Milling Process for Symmetry Supercapacitor Device
Nantikron Ngamjumrus,
Kanyapak Silakaew,
Somphob Thompho,
Chaval Sriwong and
Chesta Ruttanapun ()
Additional contact information
Nantikron Ngamjumrus: Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Kanyapak Silakaew: Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Somphob Thompho: Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
Chaval Sriwong: Smart Materials Research and Innovation Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Chesta Ruttanapun: Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Energies, 2023, vol. 16, issue 19, 1-20
Abstract:
Durian shell waste was used to fabricate activated carbon (AC) using a hydrothermal process and three-dimensional (3-D) ball milling. Reduced graphene oxide (rGO) was composited with activated durian shell carbon (DC) to enhance the electrochemical properties for fabricating a supercapacitor (SC) device. Scanning electron microscopic (SEM) examination of the AC from hydrothermally processed durian shell carbon (AC–HDC) and AC–HDC that was 3D ball milled for 15 min (rGO/AC–HDC–3D15M) showed compacted and uniformly distributed particles with good porosity. The rGO/AC–HDC–3D15M sample exhibited high specific surface area (SSA) using the Brunauer–Emmett–Teller (BET) methodology, 2311 m 2 /g, and an average pore size of 1.88 nm. Electrochemical results showed that the rGO/AC–HDC–3D15M sample had the highest specific capacitance (Cs) of 545.78 F/g, power density (Pd) of 260.834 W/kg and energy density (Ed) of 60.834 Wh/kg. A coin cell SC device using an rGO/AC–HDC3D15M electrode with a 3M KOH electrolyte exhibited a high Cs of 65.585 F/g with a high energy density of 5.123 W h/kg and power density of 47.286 W/kg. Thus, the novelty of this manuscript is that (1) the structure of the rGO/AC–HDC–3D15M composite could promote fast ionic and electronic migration during charging and discharging and (2) a rGO/AC–HDC–3D15M composite, which showed electric double-layer capacitor (EDLC) could produce a positive synergistic effect for efficient electrochemical reactions. Moreover, the high surface area of the rGO/AC–HDC–3D15M composite may mitigate the volume expansion of electrodes during cycling. Thus, this work shows that an rGO/AC–HDC–3D15M composite prepared using a hydrothermal process with 3-D ball milling can show enhanced electrochemical performance for the fabrication of an EDLC supercapacitor device.
Keywords: durian shell activated carbon; reduced graphene oxide; three-dimensional ball mill; electrochemical properties; supercapacitor device; coil cell device (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/19/6962/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/19/6962/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:19:p:6962-:d:1254173
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().