EconPapers    
Economics at your fingertips  
 

Thermoelectric-Based Radiant Cooling Systems: An Experimental and Numerical Investigation of Thermal Comfort

Benjamin Kubwimana, Mohadeseh Seyednezhad and Hamidreza Najafi ()
Additional contact information
Benjamin Kubwimana: Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
Mohadeseh Seyednezhad: Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
Hamidreza Najafi: Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA

Energies, 2023, vol. 16, issue 19, 1-20

Abstract: Researching novel cooling and heating technologies as alternatives to conventional vapor-compression refrigeration cycles has received growing attention in recent years. Thermoelectric (TE) systems rank among promising emerging technologies within this category. This paper presents a comprehensive investigation, utilizing numerical modeling and analysis via COMSOL Multiphysics along with experimental validation, to evaluate the performance of a radiant cooling ceiling panel working on thermoelectric principles. Performance metrics are based on thermal comfort levels within the designed test chamber. The system comprises a rectangular test chamber (~1.2 m × 1.2 m × 1.5 m) with a centrally positioned ceiling panel (dimensions: 0.6 m × 0.6 m × 0.002 m). Four TE modules are attached on top of the ceiling panel, facilitating effective cooling to regulate the ceiling temperature to the desired setpoint. The resultant lower ceiling temperature enables heat exchange within the chamber environment via radiation and convection mechanisms. This study examines the time-dependent variations in mean radiant temperature and operative temperature under natural convection conditions, with comfort level assessment carried out using the PMV method according to ASHRAE Standard 55. An experimental chamber is built to validate the numerical model by performing experiments at various ceiling temperatures. Design challenges are discussed in detail. The results of this investigation offer valuable insights into the anticipated thermal comfort achievable through TE-based radiant cooling systems across various operating conditions.

Keywords: thermoelectric cooling; Peltier effect; radiant cooling; thermal comfort; sustainability; building energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/19/6981/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/19/6981/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:19:p:6981-:d:1255052

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6981-:d:1255052