EconPapers    
Economics at your fingertips  
 

Consumption–Production Profile Categorization in Energy Communities

Wolfram Rozas, Rafael Pastor-Vargas (), Angel Miguel García-Vico and José Carpio
Additional contact information
Wolfram Rozas: Departamento de Sistemas de Comunicación y Control, Escuela Técnica Superior en Ingeniería Informática, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
Rafael Pastor-Vargas: Departamento de Sistemas de Comunicación y Control, Escuela Técnica Superior en Ingeniería Informática, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
Angel Miguel García-Vico: Departamento de Sistemas de Comunicación y Control, Escuela Técnica Superior en Ingeniería Informática, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
José Carpio: Escuela Técnica Superior de Ingenieros Industriales, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain

Energies, 2023, vol. 16, issue 19, 1-27

Abstract: Energy Transition is changing the renewable energy participation in new distributed generation systems like the Local Energy Markets. Due to its inherent intermittent and variable nature, forecasting production and consumption load profiles will be more challenging and demand more complex predictive models. This paper analyzes the production, consumption load profile, and storage headroom% of the Cornwall Local Energy Market, using advanced statistical time series methods to optimize the opportunity market the storage units provide. These models also help the Energy Community storage reserves to meet contract conditions with the Distribution Network Operator. With this more accurate and detailed knowledge, all sites from this Local Energy Market will benefit more from their installation by optimizing their energy consumption, production, and storage. This better accuracy will make the Local Energy Market more fluid and safer, creating a flexible system that will guarantee the technical quality of the product for the whole community. The training of several SARIMAX, Exponential Smoothing, and Temporal Causal models improved the fitness of consumption, production, and headroom% time series. These models properly decomposed the time series in trend, seasonality, and stochastic dynamic components that help us to understand how the Local Energy Market consumes, produces, and stores energy. The model design used all power flows and battery energy storage system state-of-charge site characteristics at daily and hourly granularity levels. All model building follows an analytical methodology detailed step by step. A benchmark between these sequence models and the incumbent forecasting models utilized by the Energy Community shows a better performance measured with model error reduction. The best models present mean squared error reduction between 88.89% and 99.93%, while the mean absolute error reduction goes from 65.73% to 97.08%. These predictive models built at different prediction scales will help the Energy Communities better contribute to the Network Management and optimize their energy and power management performance. In conclusion, the expected outcome of these implementations is a cost-optimal management of the Local Energy Market and its contribution to the needed new Flexibility Electricity System Scheme, extending the adoption of renewable energies.

Keywords: flexibility; local energy market; predictive sequence models; uncertainty (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/19/6996/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/19/6996/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:19:p:6996-:d:1255507

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6996-:d:1255507