The Oxygenic Photogranules—Current Progress on the Technology and Perspectives in Wastewater Treatment: A Review
German Smetana and
Anna Grosser ()
Additional contact information
German Smetana: Faculty of Environmental Engineering and Infrastructure, Czestochowa University of Technology, 42-201 Czestochowa, Poland
Anna Grosser: Faculty of Environmental Engineering and Infrastructure, Czestochowa University of Technology, 42-201 Czestochowa, Poland
Energies, 2023, vol. 16, issue 1, 1-17
Abstract:
Wastewater generation is a worldwide problem, and its treatment is an important practice for maintaining public health and environmental protection. Oxygenic photogranules (OPGs) are a relatively novel type of biogranules that have the potential to substitute the conventional activated sludge (AS) process due to the production of in situ oxygen, better physical properties such as settling velocity and density, as well as carbon and nutrient removal efficiencies. The formation of the granules is attributed to many factors, among which the most influential are light intensity, ammonium nitrogen concentration, and the presence of filamentous cyanobacteria that, along with heterotrophic microorganisms situated in the granule’s core, create a self-sustainable system that combines denitrification, carbon removal, and oxygen production. Hydrostatic and hydrodynamic cultivations are two ways that allow for obtaining OPGs. These two cultivation methods lead to the formation of various types of granules which differ in both structures as well as physical properties. This review article aims to aggregate the available literature information regarding the methods of cultivation of OPGs, their formation mechanisms, and factors that influence the cultivation as well as an overview of studies that were conducted thus far concerning this type of biogranules. Additionally, further research directions are proposed in the article.
Keywords: activated sludge; oxygenic photogranules; biogranules; wastewater treatment (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/1/523/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/1/523/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:1:p:523-:d:1023230
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().