Catalytic Upgrading of Plastic Waste of Electric and Electronic Equipment (WEEE) Pyrolysis Vapors over Si–Al Ash Pellets in a Two-Stage Reactor
Augusto Fernando de Freitas Costa,
Caio Campos Ferreira,
Simone Patrícia Aranha da Paz,
Marcelo Costa Santos,
Luiz Gabriel Santos Moreira,
Neyson Martins Mendonça,
Fernanda Paula da Costa Assunção,
Ana Carolina Gomes de Albuquerque de Freitas,
Roseane Maria Ribeiro Costa,
Isaque Wilkson de Sousa Brandão,
Carlos Emmerson Ferreira da Costa,
Sílvio Alex Pereira da Mota,
Douglas Alberto Rocha de Castro,
Sergio Duvoisin,
Luiz Eduardo Pizarro Borges,
Nélio Teixeira Machado () and
Lucas Pinto Bernar
Additional contact information
Augusto Fernando de Freitas Costa: Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Caio Campos Ferreira: Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Simone Patrícia Aranha da Paz: Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Marcelo Costa Santos: Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Luiz Gabriel Santos Moreira: Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil
Neyson Martins Mendonça: Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil
Fernanda Paula da Costa Assunção: Graduate Program of Civil Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Ana Carolina Gomes de Albuquerque de Freitas: Graduate Program of Pharmaceutical Sciences, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Roseane Maria Ribeiro Costa: Graduate Program of Pharmaceutical Sciences, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Isaque Wilkson de Sousa Brandão: Graduate Program of Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Carlos Emmerson Ferreira da Costa: Graduate Program of Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Sílvio Alex Pereira da Mota: Graduate Program of Chemistry, Universidade Federal do Sul e Sudeste do Pará, Folha 31, Quadra 7, Lote Especial—Nova Marabá, Marabá 68507-590, Brazil
Douglas Alberto Rocha de Castro: Centro Universitário Luterano de Manaus—CEULM/ULBRA, Avenida Carlos Drummond de Andrade N° 1460, Manaus 69077-730, Brazil
Sergio Duvoisin: Faculty of Chemical Engineering, Universidade do Estado do Amazonas-UEA, Avenida Darcy Vargas N° 1200, Manaus 69050-020, Brazil
Luiz Eduardo Pizarro Borges: Laboratory of Catalyst Preparation and Catalytic Cracking, Section of Chemical Engineering, Instituto Militar de Engenharia-IME, Praça General Tibúrcio N° 80, Rio de Janeiro 22290-270, Brazil
Nélio Teixeira Machado: Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Lucas Pinto Bernar: Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Energies, 2023, vol. 16, issue 1, 1-32
Abstract:
This study investigated thermal cracking and catalytic upgrading of waste from electric and electronic equipment (WEEE) plastics on a semi-batch reactor coupled to a heated catalyst fixed bed (2-stage vapor cracking). The catalyst used is a Si–Al ash obtained from commercial activated carbon pellets treated with concentrated NaOH solution and calcination. The purpose of the study was to characterize the waste stream through its thermogravimetry analysis and pyrolysis products, study the effect of temperature (350–500 °C) and catalyst quantity (0.0–7.5 %.wt) on yields of reaction products, physical chemical properties, and chemical composition of bio-oil in order to understand and evaluate production of fuels and chemical feedstock by recycling of WEEE plastic through catalytic upgrading. Time-fractioned samples were taken in determined reaction times (15, 30, 45, and 60 min) to study the evolution of cracking reactions during experiment runs through changes to chemical composition (GC/MS). A comparison with other previous work is also presented to show similarities between different feedstocks using the same thermal unit. The results indicate composition of brominated acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and high impact polystyrene (HIPS) for the WEEE plastic. The temperature of 350 °C produced better results when considering acid value but presented lower bio-oil yields (38%) and high gas yields (42%). Catalytic upgrading experiments revealed the increased presence of polycyclic aromatic hydrocarbons (PAH) with an increase in viscosity of bio-oil, increase in char yield (from 11% to 24%), and decrease in gas yields (15% to 5%). Chemical composition showed presence of aromatic hydrocarbons such as styrene, methyl-styrene, and diphenyl-propane and nitrogenated compounds such as benzene-butane-nitrile, phenolic compounds, PAHs, and brominated compounds. WEEE plastic pyrolysis is a challenging subject due to contaminant presence and varying composition, and chemical composition evaluation according to reaction time provides interesting insights into the evolution of semi-batch pyrolysis/catalytic upgrading experiments. Standardization and reproducibility of the tool should be conducted to continue the evaluation of pyrolysis and catalytic upgrading of a wide range of feedstocks.
Keywords: thermal cracking; reaction time; thermogravimetry; WEEE; e-waste; flame retardant ABS pyrolysis; PAH; physical–chemical properties; chemical composition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/1/541/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/1/541/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:1:p:541-:d:1023896
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().