EconPapers    
Economics at your fingertips  
 

Transient Behavior Analysis of the Infiltration Heat Recovery of Exterior Building Walls

Alaa Alaidroos ()
Additional contact information
Alaa Alaidroos: Architectural Engineering Department, Faculty of Engineering-Rabigh Branch, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Energies, 2023, vol. 16, issue 20, 1-21

Abstract: This research study investigated the transient behavior of the convection–diffusion model for the infiltration heat recovery (IHR) and the influence of the building envelope heat capacity, along with other factors. A transient numerical model was developed and validated to analyze the IHR under various conditions. The results highlight the role of heat capacity, thermal conductivity, wall thickness, airflow rate, airflow direction, and wall porosity on the temperature distribution and the heat recovery factor within the wall. Higher-heat-capacity walls displayed a delayed temperature rise, while low-thermal-conductivity walls reduced the conduction heat transfer and increased the IHR factor. The impact of heat capacity diminished with very low thermal conductivity walls but became evident for high-thermal-conductivity walls, particularly at higher Peclet numbers. Thicker walls enhanced the heat retention and improved the IHR, with a reduced influence of airflow rate. Higher IHR factors were associated with thicker walls, lower Peclet numbers, and higher heat capacities. The analysis also showed that the wall porosity affected the IHR with less significance than the other factors. Incorporating these findings into building energy modeling tools could improve the prediction accuracy of the thermal behavior of buildings. Accordingly, this study contributes to building physics by understanding IHR dynamics and thermal mass interactions, as well as improving building energy modeling accuracy for performance prediction. Future research can explore the impacts of additional factors on IHR and investigate the effect of IHR on the overall energy consumption of buildings.

Keywords: infiltration heat recovery; building thermal mass; wall’s heat capacity; numerical modeling; breathing wall (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/20/7198/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/20/7198/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:20:p:7198-:d:1264765

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7198-:d:1264765