Evaluation of the Performance of Commercial High Temperature Superconducting Tapes for Dynamo Flux Pump Applications
Giacomo Russo and
Antonio Morandi ()
Additional contact information
Giacomo Russo: Department of Electrical, Electronic and Information Engineering, University of Bologna, 40126 Bologna, Italy
Antonio Morandi: Department of Electrical, Electronic and Information Engineering, University of Bologna, 40126 Bologna, Italy
Energies, 2023, vol. 16, issue 21, 1-12
Abstract:
High Temperature Superconducting (HTS) dynamo flux pumps are a promising alternative to metal current leads for energization and the persistent current mode operation of high current DC superconducting magnet systems for applications in rotating machines, such as Magnetic Resonance Imaging (MRI) or fusion systems. The viability of the flux pump concept has been widely proven by laboratory experiments and research is now in progress for the design and optimization of flux pump devices for practical applications. It has been widely established that the dependence of the critical current density ( J c ) on the temperature (T), the magnetic field magnitude (B), and the orientation (θ), has a substantial impact on the overall DC voltage obtained at the terminals, as well as on the current limit and the loss of the flux pump. Since HTS tapes produced by different manufacturers, they show different dependencies of J c with the amplitude and the orientation of the magnetic field. They also give rise to different outputs when employed in flux pumps. In this paper, we evaluate and compare the performance of several commercial HTS tapes used for flux pumping purposes through numerical simulation. We also investigate the dependence of the flux pump ‘s performance on the operating temperatures. A 2D finite element numerical model is first developed and validated against experimental data at 77 K. Afterward, the same HTS dynamo apparatus used for validation is exploited for the comparison. The J c (B,θ,T) and n (B,θ,T) relations, which characterize each different tape in the model, are reconstructed via artificial intelligence techniques based on the open-access database of the Robinson Research Institute. It is shown in the paper that certain tapes are more suitable than others for flux pump applications and that the best overall operating temperature is in the vicinity of 77 K.
Keywords: HTS dynamo machine; flux pump; finite element modeling; HTS tape (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/21/7244/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/21/7244/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:21:p:7244-:d:1267083
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().