EconPapers    
Economics at your fingertips  
 

A Stochastic Load Forecasting Approach to Prevent Transformer Failures and Power Quality Issues Amid the Evolving Electrical Demands Facing Utilities

John O’Donnell and Wencong Su ()
Additional contact information
John O’Donnell: DTE Electric, Detroit, MI 48226, USA
Wencong Su: Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA

Energies, 2023, vol. 16, issue 21, 1-23

Abstract: New technologies, such as electric vehicles, rooftop solar, and behind-the-meter storage, will lead to increased variation in electrical load, and the location and time of the penetration of these technologies are uncertain. Power quality, reliability, and protection issues can be the result if electric utilities do not consider the probability of load scenarios that have not yet occurred. The authors’ approach to addressing these concerns started with collecting the electrical load data for an expansive and diverse set of distribution transformers. This provided approximately two-and-a-half years of data that were used to develop new methods that will enable engineers to address emerging issues. The efficacy of the methods was then assessed with a real-world test dataset that was not used in the development of the new methods. This resulted in an approach to efficiently generate stochastic electrical load forecasts for elements of distribution circuits. Methods are also described that use those forecasts for engineering analysis that predict the likelihood of distribution transformer failures and power quality events. 100% of the transformers identified as most likely to fail either did fail or identified a data correction opportunity. The accuracy of the power quality results was 92% while allowing for a balance between measures of efficiency and customer satisfaction.

Keywords: monte carlo simulations; distribution transformer; hot-spot temperature; random forests; logistic regression; differential entropy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/21/7251/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/21/7251/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:21:p:7251-:d:1267245

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7251-:d:1267245