EconPapers    
Economics at your fingertips  
 

Shale Gas Reservoir Pore Pressure Prediction: A Case Study of the Wufeng–Longmaxi Formations in Sichuan Basin, Southwest China

Or Aimon Brou Koffi Kablan and Tongjun Chen ()
Additional contact information
Or Aimon Brou Koffi Kablan: Laboratory of Resource and Earth Sciences, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
Tongjun Chen: Laboratory of Resource and Earth Sciences, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China

Energies, 2023, vol. 16, issue 21, 1-20

Abstract: Pore pressure prediction is critical for shale gas reservoir characterization and simulation. The Wufeng–Longmaxi shale, in the southeastern margin of the Sichuan Basin, is identified as a complex reservoir affected by overpressure generation mechanisms and variability in lithification. Thus, standard methods need to be adapted to consistently evaluate pore pressure in this basin. Based on wireline logs, formation pressure tests, and geological data, this study applied the Eaton–Yale approach, which extends the theoretical basis of Eaton and Bowers methods to reservoir geological conditions and basin history. The method was developed by integrating petrophysical properties, rock physics interpretations, and geology information. The essential steps include (1) a multi-mineral analysis to determine mineral and fluid volumes; (2) a determination of the normal pressure trend line and extending it to overpressured sections; (3) predicting pore pressure using the basic Eaton approach and identifying overpressured zones; (4) correcting compressional velocity using lithology logs and a rock physics model; (5) determining the Biot Alpha coefficient and vertical-effective stress and estimating the new pore pressure values using the Eaton–Yale method. Overpressure zones were corrected, and reservoir pore pressure varied between 30.354 and 34.959 MPa in the wells. These research results can provide a basis for building reservoir simulation models, identifying reservoir boundaries, and predicting relative permeability.

Keywords: pore pressure prediction; Eaton–Yale method; shale gas reservoirs; overpressure zones; Sichuan Basin (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/21/7280/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/21/7280/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:21:p:7280-:d:1268267

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7280-:d:1268267