Design and Analysis of High Power Density On-Board Charger with Active Power Decoupling Circuit for Electric Vehicles
Won-Jin Son and
Byoung Kuk Lee ()
Additional contact information
Won-Jin Son: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
Byoung Kuk Lee: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
Energies, 2023, vol. 16, issue 21, 1-13
Abstract:
This article presents a design method for the active power decoupling (APD) circuit of a PFC converter for high power density on-board chargers (OBCs) utilized in electric vehicles (EVs). The utilization of electrolytic capacitors to mitigate power ripple at the input is a common practice in PFC converters. However, these electrolytic capacitors are associated with issues such as limited lifetime and low current ratings, resulting in a significant portion of the OBC’s volume being occupied by them. To address these challenges and achieve power density, the relationship between the power of the APD circuit and DC-link voltage is derived, and a design method for the APD circuit for high power density is proposed. The feasibility of this design approach is validated through the PFC converter prototype designed for 6.6 kW OBC. Consequently, a substantial volume reduction of 19.7% is realized when compared to the utilization of the electrolytic capacitor approach, and a reduction of 36.2% is achieved in comparison to the conventional APD design method. This reduction in volume proves advantageous for fulfilling the requisites of high power density OBCs.
Keywords: active power decoupling; electric vehicle; high-power density; on-board charger; totem-pole converter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/21/7450/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/21/7450/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:21:p:7450-:d:1274435
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().