EconPapers    
Economics at your fingertips  
 

Modeling the Photovoltaic Power Generation in Poland in the Light of PEP2040: An Application of Multiple Regression

Aurelia Rybak (), Aleksandra Rybak and Spas D. Kolev
Additional contact information
Aurelia Rybak: Department of Electrical Engineering and Automation in Industry, Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland
Aleksandra Rybak: Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
Spas D. Kolev: School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia

Energies, 2023, vol. 16, issue 22, 1-17

Abstract: This paper presents the results of research on the development of photovoltaic systems in Poland. The authors’ goal was to identify factors that can potentially shape the dynamics of solar energy development in Poland and that will affect the implementation of the PEP2040 goals. The authors also wanted to find a forecasting method that would enable the introduction of many explanatory variables—a set of identified factors—into the model. After an initial review of the literature, the ARMAX and MLR models were considered. Finally, taking into account MAPE errors, multiple regression was used for the analysis, the error of which was 0.87% (minimum 3% for the ARMAX model). The model was verified based on Doornik–Hansen, Breusch–Pagan, Dickey–Fuller tests, information criteria, and ex post errors. The model indicated that LCOE, CO 2 emissions, Cu consumption, primary energy consumption, patents, GDP, and installed capacity should be considered statistically significant. The model also allowed us to determine the nature of the variables. Additionally, the authors wrote the WEKR 2.0 program, which allowed to determine the necessary amount of critical raw materials needed to build the planned PV energy generating capacity. Solar energy in Poland currently covers about 5% of the country’s electricity demand. The pace of development of photovoltaic installations has exceeded current expectations and forecasts included in the Polish Energy Policy until 2040 (PEP2040). The built model showed that if the explanatory variables introduced into the model continue to be subject to the same trends shaping them, a dynamic increase in photovoltaic energy production should be expected by 2025. The model indicates that the PEP2040 goal of increasing the installed capacity to 16 GW by 2040 can be achieved already in 2025, where the PV production volume could reach 8921 GWh. Models were also made taking into account individual critical raw materials such as Cu, Si, Ge, and Ga. Each of them showed statistical significance, which means that access to critical raw materials in the future will have a significant impact on the further development of photovoltaic installations.

Keywords: PV power generation; forecast; multiple regression; energy transition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/22/7476/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/22/7476/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:22:p:7476-:d:1275709

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-05
Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7476-:d:1275709