EconPapers    
Economics at your fingertips  
 

Achieving Net Zero Carbon Performance in a French Apartment Building?

Alpha Hamid Dicko, Charlotte Roux () and Bruno Peuportier
Additional contact information
Alpha Hamid Dicko: CES (Centre for Energy Efficiency of Systems), MINES Paris—PSL Research University, 75006 Paris, France
Charlotte Roux: CES (Centre for Energy Efficiency of Systems), MINES Paris—PSL Research University, 75006 Paris, France
Bruno Peuportier: CES (Centre for Energy Efficiency of Systems), MINES Paris—PSL Research University, 75006 Paris, France

Energies, 2023, vol. 16, issue 22, 1-17

Abstract: Containing global warming to 1.5 °C implies staying on a given carbon budget and therefore being able to design net zero carbon buildings by 2050. A case study corresponding to a French residential building is used to assess the feasibility of achieving this target. Starting from an actual construction built in 2016, various improvement measures are studied: lowering heating energy needs, implementing bio-sourced materials and renewable energy systems (geothermal heat pump, solar domestic hot water production, and photovoltaic electricity production). Dynamic thermal simulation is used to evaluate energy consumption and overheating risk in hot periods. Greenhouse gas emissions are quantified using a consequential life cycle assessment approach, considering that during a transition period, exporting electricity avoids impacts corresponding to marginal production on the grid. Avoided impacts decrease and become zero when the grid is ultimately “decarbonized”. From this point, the building should be net zero emissions, but there remain unavoidable emissions. Residual GhG (greenhouse gas) emissions account for 5.6 kgCO 2 eq/m 2 annually. The possibility of offsetting these emissions is investigated, considering sequestration in forests or vegetation systems. A net zero emission level can be achieved, but on a national level, it would require that the whole sequestration potential of forest growth be devoted to offset emissions of new construction. A circular economy for construction products and equipment and considering water use will be needed to further decrease environmental impacts.

Keywords: life cycle assessment; energy simulation; carbon sequestration; zero carbon emission building (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/22/7608/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/22/7608/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:22:p:7608-:d:1281642

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7608-:d:1281642